Катализаторы технологических процессов

Технологические характеристики твердых катализаторов

Подбор катализаторов для проведения промышленных процессов – задача чрезвычайно сложная. Катализаторы очень специфичны по отношению к различным химическим реакциям. Существующие теории катализа объясняют эту специфичность рядом энергетических и геометрических факторов, в результате влияния которых данный катализатор воздействует на скорость только одной реакции или очень узкой группы реакций. Не всегда еще возможен строгий научный выбор конкретного катализатора для данного химико-технологического процесса, хотя теория каталитических процессов в последние десятилетия получила значительное развитие и характеризуется многими новыми достижениями.

Твердые катализаторы – это, как правило, высокопористые вещества с развитой внутренней поверхностью, характеризующиеся определенной пористой и кристаллической структурой, активностью, селективностью и рядом других технологических характеристик.

Рассмотрим некоторые характеристики твердых катализаторов.

Активность.При сравнении разных катализаторов обычно выбирают более активный, если он удовлетворяет основным технологическим требованиям.

Активность катализатора – мера ускоряющего воздействия по отношению к данной реакции.

Всвязи с большим разнообразием каталитических процессов не существует единого количественного критерия активности. Это связано с тем, что применение различных катализаторов даже для одной и той же химической реакции может по-разному изменить ее механизм. Как правило, применение катализатора приводит к изменению и порядка реакции, и энергии активации, и предэкспоненциального множителя.

Количественным критерием активности катализатора для данной реакции может служить, например, константа скорости, измеренная для разных катализаторов в сопоставимых условиях (стандартных). Такой подход применим, если для всех сравниваемых катализаторов данной группы остается одинаковым порядок реакции.

Иногда сравнивают катализаторы по скорости реакции или степени превращения реагентов в стандартных условиях, по количеству реагентов, вступающих во взаимодействие в единицу времени на единице поверхности катализатора (производительности, или напряженности, катализатора) и т. п.

В технологических расчетах часто каталитическую активность определяют скоростью реакции в стандартных для этой реакции условиях, отнесенной к единице объема или массы катализатора.

Если каталитическая реакция имеет такой же порядок, что и некаталитическая, т. е. их константы скорости k Kт и k имеют одинаковые единицы измерения, активность катализатора А можно определить, как отношение констант

, (8.1)

где Е’ и Е – энергии активации каталитической и некаталитической реакции.

Из уравнения (8.1)следует, что активность тем выше, чем больше снижается активация в присутствии катализатора. Однако следует иметь в виду, что в присутствии катализатора меняется не только энергия активации, но и предэкспоненциальный множитель. Рост активности вследствие снижения энергии активации сдерживается уменьшением по сравнению с k0(имеет место так называемый компенсационный эффект).

Температура зажигания.Наряду с активностью важной технологической характеристикой является температура зажигания катализатора Tзаж.

Температура зажигания – это минимальная температура, при которой технологический процесс начинает идти с достаточной для практических целей скоростью.

Понятие «зажигание» означает, что при возрастании температуры выше предельной, равной Tзаж,происходит резкое, скачкообразное увеличение скорости реакции. «Зажигание» может иметь место и в некаталитических реакциях.

Рассмотрим, например, графическое решение системы уравнений материального и теплового балансов проточного реактора при проведении в нем экзотермической реакции (см. рис. 8.2). Если начальная температура реакционной смеси равна T1, в реакторе не может быть установлена высокая температура и, следовательно, высокая скорость реакции, при которой глубина превращения за заданное время пребывания будет достаточно высокой. Предположим теперь, что линия 2,описывающая уравнение теплового баланса, будет касательной в точке А к линии 1 уравнения материального баланса. Тогда совсем небольшое изменение начальной температуры на входе в реактор от T1∆T до T1 + ∆T приведет к скачкообразному изменению достигаемой в реакторе степени превращения от хА,1 до хА,2. Это означает, что при тех же значениях объема реактора и объемного расхода реагентов через него произошло резкое возрастание скорости реакции (и одновременно скорости тепловыделения).

Рис. 8.2.Уравнения материального и теплового балансов
проточного реактора (совместное решение)

Следовательно, температура Т2 и является температурой зажигания. Числовое значение T2 на рис. 8.2 (и соответственно положение точки А) определяется в первую очередь кинетическими особенностями реакции, влияющими на положение линии 1 уравнения материального баланса. Так как каждый катализатор характеризуется своими кинетическими параметрами, то и температура зажигания будет различной для разных катализаторов.

С технологической точки зрения лучше использовать катализаторы снизкой температурой зажигания, что позволяет снизить энергетические затраты на предварительный нагрев реакционной смеси.

Для экзотермических реакций понятие «температура зажигания» может быть конкретизировано количественно. Чем меньше температура проведения процесса, тем ниже скорость реакции и тем меньше выделяется теплоты. При некоторой минимальной температуре (температура зажигания) скорость выделения теплоты становится равной скорости отвода теплоты (расходу теплоты на нагрев исходной реакционной смеси и выносу теплоты с продуктами реакции). Таким образом, температура зажигания для экзотермических реакций – это минимальная температура, при которой процесс можно проводить в автотермическом режиме, без подвода теплоты извне.

Особенно важно иметь невысокую температуру зажигания катализатора при проведении обратимых экзотермических реакций, тогда невысокие температуры проведения процесса позволяют сместить равновесие реакции в сторону ее продуктов.

Селективность. Сложные каталитические реакции могут протекать по нескольким термодинамически возможным направлениям с образованием большого числа различных продуктов. Преобладающее течение реакции зависит от используемого катализатора, причем не всегда ускоряется процесс, термодинамически самый выгодный из нескольких возможных.

Селективностью, или избирательностью, катализатора называют его способность избирательно ускорять целевую реакцию при наличии нескольких побочных.

Количественно селективность катализатора можно оценить как селективность процесса (см. § 1.2) – интегральную или дифференциальную.

Если одновременно протекает несколько параллельных реакций, можно подобрать разные селективные катализаторы для каждой из этих реакций. Например, в присутствии оксида алюминия или оксида тория этанол разлагается преимущественно на этилен и воду:

С2Н5ОН С2Н4 + Н2О.

В присутствии серебра, меди и других металлов практически имеет место только реакция дегидрирования спирта с образованием уксусного альдегида:

С2Н5ОН СН3СНО + Н.

В присутствии смешанного катализатора (А12О3 + ZnO) с достаточно высокой селективностью идут реакции дегидратации и дегидрирования с образованием бутадиена:

2Н5ОН С4Н6 + 2Н2О + Н2.

Селективность зависит не только от выбранного катализатора, но и от условий проведения процесса, области протекания гетерогенно-каталитического процесса (кинетической, внешне- или внутреннедиффузионной) и т. д.

Пористая и кристаллическая структура катализатора.Важным свойством катализатора является пористая структура, которая характеризуется размерами и формой пор, пористостью (отношением свободного объема пор к общему объему), удельной поверхностью катализатора (т. е. приходящейся на единицу массы или объема).

При выборе твердого вещества, которое должно служить активным катализатором для гетерогенных газовых реакций, важную роль играет доступность поверхности катализатора для реагирующих газов. Чем больше для каждого данного катализатора поверхность, доступная для реагирующего газа, тем выше скорость расходования реагентов в единицу времени при использовании того же количества катализатора.

Промышленные катализаторы всегда имеют развитую внутреннюю поверхность, иначе внешняя поверхность, весьма небольшая, быстро подвергалась бы отравлению, и катализатор вскоре утрачивал бы активность. Чем выше пористость катализатора и чем меньше диаметр пор, тем больше внутренняя поверхность. Современные катализаторы характеризуются большими значениями удельной поверхности (до 10–100м 2 /г).

Однако распределение пор по размерам может оказаться таким, что часть поверхности катализатора окажется совершенно недоступной для реагирующих молекул большого размера и, кроме того, скорость превращения реагентов в конечные продукты может уменьшаться вследствие затруднения диффузии реагентов внутри пор.

Для получения катализаторов с развитой пористой структурой используют специальные методы их приготовления. Стараются применять в качестве катализаторов природные или искусственные высокопористые адсорбенты (алюмосиликаты, цеолиты, силикагель, активированный уголь и т. д.). Эти вещества употребляют также как носители, на поверхность которых наносят активные компоненты.

Наряду с пористой структурой большое значение имеет кристаллическая структура катализаторов. Различные кристаллические модификации одного и того же вещества могут обладать сильно отличающейся каталитической активностью. Например, переход γ – А12О3 в α – А12О3 на несколько порядков снижает активность этого вещества как катализатора дегидрирования.

Промотирование и отравление катализаторов.Часто введение очень небольшого количества (долей процента) какой-либо посторонней добавки к основному катализатору приводит либо к резкому повышению его активности, либо, наоборот, к снижению активности на несколько порядков. В первом случае говорят о промотировании, во втором – об отравлении катализатора.

Механизм промотирования твердых катализаторов может быть различным. Добавки могут вступать с основным катализатором в химическое взаимодействие, образуя на поверхности продукты, обладающие более высокой каталитической активностью. Они могут изменить условия взаимодействия с реагентами в местах контакта основного компонента и промотора, а также увеличить дисперсность или стабилизировать пористую и кристаллическую структуру катализатора и т. п.

Например, каталитическая активность V2O5 по отношению к реакции окисления диоксида серы повышается в сотни раз при добавлении небольших количеств сульфатов щелочных металлов; введение 2–3 % А12О3 в катализатор синтеза аммиака позволяет создать стабильную геометрическую структуру, не меняющуюся под воздействием реакционной среды в течение длительного времени.

Практическому использованию каталитических процессов часто препятствует снижение активности катализатора при воздействии на него веществ, называемых каталитическими ядами. Например, если в газе, поступающем для окисления SO2 на ванадиевом катализаторе, содержание SiF4 составляет 4–5 мг/м 3 , происходит резкое снижение каталитической активности.

Это объясняется теорией активных центров, согласно которой каталитическую активность проявляет не вся поверхность катализатора, а лишь некоторые ее участки, обладающие определенным энергетическим и геометрическим соответствием реагирующим молекулам, – активные центры. Каталитические яды блокируют активные центры, образуя с ними поверхностные химические соединения.

Отравление бывает обратимым и необратимым. При обратимом отравлении активность катализатора постепенно восстанавливается, если в реакционной смеси больше не содержится каталитического яда. При необратимом отравлении действием свежей реакционной смеси активность восстановить не удается. Одно и то же вещество может вызвать и обратимое и необратимое отравления, в зависимости от продолжительности его действия, концентрации в реакционной смеси, температуры процесса.

Например, для железного катализатора синтеза аммиака каталитическими ядами являются кислород и кислородосодержащие соединения (СО, СО2, Н2О). При содержании 1∙10 –2 % СО в газовой смеси, поступающей на катализатор, работающий при давлении 30 МПа и температуре 450 °С, через 6 сут. активность катализатора уменьшается на 25 %. Его активность можно полностью восстановить за 1 сут. работы с чистым газом. При содержании 5∙10 –2 % СО в исходном газе через 3 сут. активность катализатора падает на 67 %, а через 4 сут. работы на чистом газе полностью восстанавливается. При температуре 500 °С и содержании 5∙10 –3 % О2 концентрация в газе на выходе падает на 4 % и применение чистого газа уже не восстанавливает прежнюю активность катализатора.

Для удлинения срока службы катализатора в промышленных условиях в технологических схемах предусматривают тщательную очистку реагирующих веществ от примесей, являющихся каталитическими ядами (например, в производстве серной кислоты – от соединений мышьяка и фтора, в производстве аммиака – от СО, СО2, сернистых соединений и т. д.).

В ряде случаев катализатор отравляется побочными продуктами реакции. Так, в реакциях органических соединений (крекинга, дегидрирования, изомеризации) отравление катализаторов часто происходит в результате образования высокоуглеродистой полимерной пленки (так называемого кокса), покрывающей поверхность катализатора. Для ее удаления цикл катализа сменяют циклом регенерации – катализатор продувают при высокой температуре воздухом для перевода кокса в СО2.

Дата добавления: 2015-06-17 ; просмотров: 2394 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Технологические характеристики твердых катализаторов

Лекция 8. Катализ

1. Общие представления о катализе

2. Технологические характеристики твердых катализаторов

3. Промотирование и отравление катализаторов

4. Основные стадии гетерогеннокаталитических процессов

Общие представления о катализе

Современные процессы основного неорганического синтеза, нефтепе­ре­работки, нефтехимии и органического синтеза в настоящее время без применения катализаторов невозможно представить. Около 90 % промышлен­ных химико-технологических процессов ведут с применением катализаторов. Примерами неорганического синтеза являются: производства аммиака, азотной и серной кислот; нефтехимии и органического синтеза – процессы производства метанола, сти­рола, бутадиена, фенола и ацетона, ацетальдегида и др. В нефтепере­ра­ботке – это процессы каталитическиого крекинга и риформинга, гидроочи­стки и гидрокрекинга, алкилирования изобутана и изомеризации парафи­новых углеводородов и т.д.

Каталитические процессы имеют ряд важных преимуществ по сравне­нию с некаталитическими. Кроме того, что применение катали­за­торов резко ускоряет скорости химических реакций, процессы с их использованием могут быть организованы как непрерывные, безотходные и ме­нее энерго­емкие, отличающиеся высокими технико-экономическими пока­за­телями и обеспечивающие более высокий выход целевых продуктов.

Катализаторы – это вещества, которые, многократно вступая в промежуточное взаимодействие с участниками реакции, изменяют ее механизм и увеличивают скорость. При этом они восстанавливают свой химический состав после каждого цикла промежуточных взаимодействий.

Влияние катализатора на механизм химической реакции можно пояснить на примере реакции А+В ® D, имеющей без катализатора энергию активации Ео
(рис. 1). Рассмотрим энергетическую диаграмму этой реакции:

Рисунок 1 — Энергетические диаграммы каталитической и некаталитической

I и II — энергетические уровни исходных реагентов и продуктов реакции; 1 — путь реакции без катализатора; 2 путь каталитической реакции

Ход реакции без катализатора на энергетической диаграмме изображен кривой 1. В присутствии катализатора механизм реакции изменяется, и она протекает через несколько последовательных стадий в соответствии с кривой 2. Например, первой стадией может быть образование промежуточного активированного комплекса АКт:

А + Кт ® АКт, где Кт — катализатор.

Затем активированный комплекс реагирует со вторым реагентом с образованием комплекса катализатора и продукта:

Последней стадией является разложение комплекса DКт с образованием продукта D и высвобождением катализатора для нового каталитического цикла:

Каждая из этих последовательных стадий характеризуется своими значениями энергии активации E1, E2, E3, но, как правило, высота каждого из этих потенциальных барьеров ниже энергии активации Eо. Таким образом, в присутствии катализатора реакция протекает по энергетически более выгодному пути, что позволяет проводить процесс с большей скоростью.

Исходное (I) и конечное (II) энергетические состояния реакционной системы в присутствии катализатора и без него остаются одинаковыми. Следовательно, катализатор не может изменить состояние химического равновесия, которое не зависит от пути реакции. Роль катализатора состоит лишь в изменении скорости достижения состояния равновесия. Катализатор может увеличивать скорость только тех процессов, которые разрешены термодинамически, но не может инициировать термодинамически невозможные реакции.

Некоторые химические реакции без катализаторов практически неосуществимы из-за слишком большой энергии активации. Казалось бы, что для преодоления высокого энергетического барьера можно повысить кинетическую энергию молекул, т.е. увеличить температуру. Но для многих обратимых экзотермических реакций повышение температуры приводит к смещению равновесия в обратную сторону и делает реакцию неразрешенной термодинамически. В таких случаях применение катализатора не только оправдано, но и необходимо. Катализатор снижает энергию активации реакции и позволяет тем самым проводить ее при существенно более низких температурах. Очень важна роль катализаторов в осуществлении сложных реакций, так как катализаторы обладают способностью избирательно влиять на скорость только какой-то одной нужной реакции.

В качестве примера рассмотрим реакцию синтеза аммиака, характеризующуюся очень большим значением энергии активации (примерно 280 кДж/моль). Для преодоления такого высокого энергетического барьера реагенты необходимо было бы нагреть до температур выше 1000°С, при которых равновесная степень превращения даже при очень высоких значениях давления ничтожно мала.

В присутствии катализатора на основе железа энергия активации синтеза аммиака снижается примерно до 160 кДж/моль, что позволяет проводить реально процесс с достаточно высокой скоростью при температурах 400-500°С и высоких давлениях, достигая 20-35%-ной степени превращения исходного сырья.

Чрезвычайно важна роль катализаторов в осуществлении сложных реакций, так как катализаторы обладают способностью избирательно влиять на скорость только какой-то одной нужной реакции. Так, например, сейчас трудно представить процесс крекинга нефтепродуктов (система сложных последовательных и параллельных реакций) без селективно действующих цеолитных катализаторов, позволяющих направить процесс в сторону получения высококачественного бензина.

Каталитические процессы подразделяют на две большие группы – гомогенные и гетерогенные. Наибольшее распространение в промышленности получили гетерогенно-каталитические процессы. В свою очередь, подавляющее большинство гетерогенно-каталитических процессов такие, в которых границей раздела фаз служит поверхность твердого катализатора, находящегося в газообразной или жидкой реакционной среде. Существенным преимуществом таких процессов является простота разделения продуктов реакции и частиц катализатора для повторного использования катализатора.

Технологические характеристики твердых катализаторов

Подбор катализаторов для проведения промышленных процессов – задача чрезвычайно сложная. Катализаторы очень специфичны по отношению к различным химическим реакциям. Твердые катализаторы – это, как правило, высокопористые вещества с развитой внутренней поверхностью, характеризующиеся определенной пористой и кристаллической структурой, активностью, селективностью и рядом других технологических характеристик. Наиболее важные характеристики твердых катализаторов:

1) Активность – это мера ускоряющего воздействия катализатора по отношению к данной реакции. При сравнении разных катализаторов обычно выбирают более активный, если он удовлетворяет основным технологическим требованиям. В связи с большим разнообразием каталитических процессов не существует единого количественного критерия активности. Это связано с тем, что применение различных катализаторов даже для одной и той же химической реакции может по-разному изменить ее механизм. Как правило, применение катализатора приводит к изменению и порядка реакции, и энергии активации, и предэкспоненциального множителя. Количественным критерием активности катализатора для данной реакции может служить, например, константа скорости, измеренная для разных катализаторов в сопоставимых условиях. Такой подход применим, если для всех сравниваемых катализаторов данной группы остается одинаковым порядок реакции. Иногда сравнивают катализаторы по скорости реакции или по степени превращения реагентов в стандартных условиях, по количеству реагентов, вступающих во взаимодействие в единицу времени на единице поверхности катализатора (производительности или напряженности катализатора) и т.п.

2) Селективность – это способность катализатора избирательно ускорять целевую реакцию при наличии нескольких побочных. Сложные каталитические реакции могут протекать по нескольким термодинамически возможным направлениям с образованием большого числа различных продуктов. Преобладающее направление зависит от используемого катализатора, причем не всегда ускоряется процесс, термодинамически самый выгодный из нескольких возможных. Количественно селективность катализатора можно оценить как селективность процесса – интегральную или дифференциальную. Селективность зависит не только от выбранного катализатора, но и от условий проведения процесса, от области протекания гетерогенно-каталитического процесса и т.д.

Если одновременно протекает несколько параллельных реакций, можно подобрать разные селективные катализаторы для каждой из этих реакций. Например, в присутствии оксида алюминия или оксида тория этанол разлагается преимущественно на этилен и воду:

С2Н5ОН С2Н4 + Н2О.

В присутствии серебра, меди и других металлов практически имеет место только реакция дегидрирования спирта с образованием уксусного альдегида:

С2Н5ОН СН3СНО + Н2.

В присутствии смешанного катализатора (А12О3 + ZnO) с достаточно высокой селективностью идут реакции дегидратации и дегидрирования с образованием бутадиена:

2Н5ОН С4Н6 + 2Н2О + Н2.

3) Температура зажигания – это минимальная температура, при которой технологический процесс начинает идти с достаточной для практических целей скоростью. Понятие «зажигание», означает, что при увеличении температуры выше предела, равного Тзаж, происходит резкое, скачкообразное увеличение скорости реакции. Так как каждый катализатор характеризуется своими кинетическими параметрами, то и температуры зажигания будут различными для разных катализаторов. С технологической точки зрения лучше использовать катализаторы с низкой температурой зажигания, что позволяет снизить энергетические затраты на предварительный нагрев реакционной смеси. Особенно важно иметь невысокую температуру зажигания катализатора при проведении обратимых экзотермических реакций, тогда невысокие температуры проведения процесса позволяют сместить равновесие реакции в сторону образования продуктов.

4) Пористая структура катализатора – характеризуется размерами и формой пор, пористостью (отношением свободного объема пор к общему объему), удельной поверхностью (поверхностью, приходящейся на единицу массы или объема). При выборе твердого вещества, которое должно служить активным катализатором гетерогенных газовых реакций, важную роль играет доступность поверхности. Чем больше для данного катализатора поверхность, доступная для реагирующих молекул, тем выше скорость расходования реагентов в единицу времени при использовании того же количества катализатора. Промышленные катализаторы всегда имеют развитую внутреннюю поверхность, иначе весьма небольшая внешняя поверхность быстро подвергалась бы отравлению, и катализатор вскоре утрачивал бы активность. Чем выше пористость катализатора и чем меньше диаметр пор, тем больше внутренняя поверхность. Современные катализаторы характеризуются большими значениями удельной поверхности (до 10-100м 2 /г). Однако распределение пор по размерам может оказаться таким, что часть поверхности катализатора окажется недоступной для молекул большого размера и, кроме того, скорость превращения реагентов в конечные продукты может уменьшаться вследствие затруднения диффузии реагентов внутри пор. Для получения катализаторов с развитой пористой структурой используют специальные методы их приготовления. Стараются применять в качестве катализаторов природные или искусственные высокопористые адсорбенты (алюмосиликаты, цеолиты, силикагель, активированный уголь и т. д.). Эти вещества употребляют также как носители, на поверхность которых наносят активные компоненты.

5) Кристаллическая структура катализатора – различные кристаллические модификации одного и того же вещества могут обладать сильно отличающейся каталитической активностью. Например, переход -Аl2О3 в -А12О3 (это происходит при температуре около 1200 о С) на несколько порядков снижает активность этого вещества как катализатора.

Дата добавления: 2018-04-04 ; просмотров: 332 ; ЗАКАЗАТЬ РАБОТУ

Технологические характеристики твердых катализаторов

Подбор катализаторов для проведения промышленных процес­сов — задача чрезвычайно сложная. Катализаторы очень специ­фичны по отношению к различным химическим реакциям. Суще­ствующие теории катализа объясняют эту специфичность рядом энергетических и геометрических факторов, в результате влияния которых данный катализатор воздействует на скорость только одной реакции или очень узкой группы реакций. Не всегда еще возможен строгий научный выбор конкретного катализатора для данного химико-технологического процесса, хотя теория катали­тических процессов в последние десятилетия получила значитель­ное развитие и характеризуется многими новыми достижениями.

Твердые катализаторы — это, как правило, высокопористые вещества с развитой внутренней поверхностью, характеризующиеся определенной пористой и кристаллической структурой, активнос­тью, селективностью и рядом других технологических характеристик.

Рассмотрим некоторые характеристики твердых катализаторов.

Температура зажигания — это минимальная температура, при которой технологический процесс начинает идти с достаточной для практических целей скоростью.

Селективностью или избирательностью катализатора называют его способность избирательно ускорять целевую реакцию при наличии нескольких побочных.

Селективность зависит не только от выбранного катализатора, но и от условий проведения процесса, области протекания гетерогенно-каталитического процесса (кинетической, внешне- или внутреннедиффузионной) и т. д.

Пористая структура характеризуется размерами и формой пор, пористостью (отношением свободного объема пор к общему объему), удельной поверхностью катализатора

Распределение пор по размерам может оказаться таким, что часть поверхности катализатора окажется недоступной для реагирующих молекул большого размера и, кроме того, скорость превращения реагентов в конечные продукты может уменьшаться вследствие затруднения диффузии реагентов внутри пор.

Промотирование и отравление катализаторов.Часто введение очень небольшого количества (долей процента) какой-либо посторонней добавки к. основному катализатору приводит либо к резкому повышению его активности, либо, наоборот, к снижению активности на несколько порядков. В первом случае говорят о промотировании, во втором — об отравлении катализатора

Добавки могут вступать с основным катализатором в химическое взаимодействие, образуя на поверхности продукты, обладающие более высокой каталитической активностью. Они могут изменить условия взаимодействия с реагентами в местах контакта основного компонента и промотора, а также увеличить дисперсность или стабилизировать пористую и кристаллическую структуру катализатора

1-я стадия — диффузия реагента к внешней поверхности катализатора. Эта стадия назвается стадией внешней диффузии

2-я стадия диффузия внутри пор катализатора (стадия внутренней диффузии).

3-я стадия – адсорбция. Различают физическую адсорбцию и хемосорбцию. При хемосорбции молекулы адсорбата образуют поверхностные соединения с адсорбентом.

4-я стадия химическая реакция, механизм этой реакции может быть различным, от него зависит вид кинетического уравнения. В результате поверхностной реакции образуется адсорбированный продукт.

5-я стадия десорбция продукта с поверхности катализатора.

6-я стадия. диффузия из пор к внешней поверхности катализатора

7-я стадия. — диффузия от поверхности катализатора

Стадии 3, 4, 5 являются центральными в ходе каталитического процесса. Суммарно их можно рассматривать как поверхностную химическую реакцию. Эти стадии могут протекать одновременно с предыдущими — диффузионными — стадиями, причем как на внешней поверхности зерна катализатора, так и, в основном, на внутренней поверхности пор.

6-я стадия. Десорбированные газообразные продукты диффун­дируют из пор к внешней поверхности катализатора (обратная внутренняя диффузия).

7-я стадия. Газообразные продукты диффундируют от поверх­ности катализатора в тазовый поток через пограничную пленку, окружающую зерно катализатора.

Таким образом, гетерогенно-каталитический процесс — это сложная система последовательных и параллельных стадий, име­ющих разную природу. Как и в случае некаталитического гетеро­генного процесса, одна из стадий может оказывать наиболее силь­ное тормозящее воздействие на весь процесс, тогда скорости остальных стадий «подстраиваются» под скорость этой наиболее затрудненной стадии, которая может быть названа лимитирующей.

Влияние массопередачи через газовую фазу.Исходные реагенты до адсорбции и продукты реакции после десорбции должны транс­портироваться из газового потока к поверхности катализатора или от нее в газовый поток. Если реакция происходит в проточной системе, скорость газа обычно достаточно велика, чтобы массопе-редача происходила по механизму турбулентной диффузии. При этом общая скорость процесса не зависит или зависит слабо от скорости внешней диффузии. При нетурбулентном течении газа скорость массопередачи может быть относительно низкой, воз­можно внешнедиффузионное торможение каталитической реак­ции, нежелательное при проведении процесса в промышленном реакторе.

Каталитический процесс протекает во внешнедиффузионной области при большом диаметре зерен катализатора, малой линей­ной скорости газа относительно катализатора и очень высоких тем­пературах.

При этом концентрация реагентов сД5 и продуктов сКк у внеш­ней поверхности катализатора резко отличается от концентраций

в газовом потоке.

Внешнедиффузионное торможение каталитической реакции нежелательно в промышленном реакторе.При этом концентрация реагентов и продуктов у внешней поверхности катализатора резко отличается от концентрации в объеме реакционной смеси

Не нашли то, что искали? Воспользуйтесь поиском:

Промышленные катализаторы

Купим промышленные катализаторы в любом объеме в Ростове-на-Дону и Ростовской области.

О катализаторах

Катализатор является химическим веществом, который помогает ускорить реакцию. Он имеет широкое применение в различных отраслях промышленности. Главными потребителями катализатора являются нефтеперерабатывающая отрасль, нефтехимическая, химическая, успешно применяются в сфере экологии и защиты окружающей среды.

Классификация

Все выпускаемые устройства классифицируются:

  • По типу реакции катализа – кислотно-основной, окислительно-восстановительный
  • По группе процесса катализа – синтез аммиака, крекинг нефтепродукта
  • По природе используемой активной основы – металлический, окисный, сульфидный, комплексный и прочие
  • По методу изготовления

Во всех катализаторах используются цветные и драгоценные металлы: платина, алюминий, железо, хром, никель, ванадий, кобальт, висмут, серебро, золото и многие другие.

Промышленные катализаторы также бывают гомогенными и гетерогенными. Гомогенный — находится в общей фазе с реагирующим веществом. Катализатором образующим собственную фазу, разделенную от реагирующих веществ – называют гетерогенным. Применяя промышленный и другие виды катализаторов мы можем не только спасти природу от отравляющих веществ, которые существуют на любом производстве, но и сэкономить сырье.

Применение в промышленности

Бурный рост промышленности, который мы сейчас наблюдаем, не был бы возможен без развития и появления новых химических технологических процессов. В большей мере прогрессу способствует широкое использование катализаторов, именно они помогают превратить сырье низкого сорта в продукты высокого сорта. Катализатор можно сравнить с философским камнем, который, считалось, превращает некоторые металлы в золото. Но вот только катализаторы превращают сырье в различные лекарственные препараты, в пластмассу, в химреактивы, в топливо, в полезные и нужные удобрения и прочие полезности.

Применение катализаторов

Значимым событием для практического использования катализатора считается начало производства маргарина методом каталитического гидрирования растительных масел. Впервые это осуществили в самом начале 20-го века, а уже в двадцатых годах ученые разработали каталитические методы с целью получить новые органические материалы. Олефины, нитрилы, эфиры, кислоты стали своего рода «кирпичиками» для производства пластмасс.

Очередной волной, когда стали использовать промышленные катализаторы, стала нефтепереработка. Вскоре, в этой области промышленности без катализатора уже не обходились, так как эти устройства применяются на всех стадиях процесса, таких как:

  • Крекинг
  • Риформинг
  • Гидросульфирование
  • Гидрокрекинг
  • Изомеризация
  • Полимеризация
  • Алкилирование

В последние годы широкое применение получили катализаторы в сфере охраны окружающей среды. Самое известное устройство, которое помогает нам сохранить экологию – это катализатор выхлопных газов в автомобилях.

Области применения нейтрализаторов постоянно расширяются, реакция катализа дает возможность улучшить разработанные ранее технологии. Например, каталитический крекинг был усовершенствован благодаря применению цеолитов.

Гидрирование

В основном, каталитические реакции связаны с тем, что активируется атом водорода с какой-нибудь другой молекулой, что и приводит к химическим взаимодействиям. Данный процесс называют гидрированием, и именно он является основой для многих этапов в нефтепереработке, а также при получении из угля жидкого топлива. Во время войны, в Германии широко применялся процесс гидрирования для производства бензина для самолетов и топлива для авто из угля, ведь в Германии нет нефти.

Гидрирование растительных пищевых масел

Еще одно полезное свойство, которое имеют катализаторы в пищевой промышленности – это гидрирование растительного масла в маргарин, кулинарный жир, прочие пищевые продукты. В этом случае на катализатор или подложку наносят мелкодисперсный порошок никеля.

Дегидрирование

Данную химическую реакцию катализа применяют реже, чем гидрирование, но, тем не менее, она также важна, она помогает получить стирол, пропан, бутан, бутен.

Кислотный катализ

Активность большинства катализаторов определяется и зависит от их кислотных свойств. Именно кислотные промышленные катализаторы в большинстве случаев применяют при нефтепереработке, для получения парафинов, углеводородов ароматических. Самое новое в применении катализаторов – это получение этилированного топлива, а также высокооктановых видов бензина.

Необходимо сказать, что до сих пор нет единой каталогизации промышленных катализаторах. Всё идет опытным путем. Классифицируют катализаторы на основе такие параметров:

  • Тип реакции катализа
  • Природа вещества, который является активным
  • Группа каталитического процесса.

Наиболее комплексный вариант – это именно третий, так как именно он наиболее ориентирован на современную промышленность – нефтехимическую, химическую, нефтеперерабатывающую.

История создания

Считается, что первый случай применения катализатора – это производство из спирта при помощи серной кислота в качестве катализатора, этилового эфира. В 18 веке было совершено открытие каталитического действия кислоты для осахаривания крахмала. Здесь, в качестве катализатора были использованы глина и некоторые виды металлов. Но все-таки, еще не существовало понятие «катализ». Только в 1834 году было введено Митчерлихом такое понятие, как «контактная реакция». Название «катализ» было предложено Берцелиусом через год – в 1835 году.

Применение металлической платины для окисления было запатентовано в 1831 году ученым Филлипсом, но промышленного применения данный способ катализа не получил по ряду причин (платина снижала свою активность при соединении с мышьяком и некоторыми другими ядовитыми веществами, содержащимися в газах). После того, как разработали способ очистки различных газов от ядовитых веществ, стало возможно создать первые крупные промышленное устройство. Он был введен в эксплуатацию в России в 1897 году, запатентован в 1902 году. Сегодня самые важные и крупные предприятия различных отраслей применяют промышленные «каты», и для каждого процесса используется свой вид катализатора, который имеет оптимальное сочетание свойств.

Объем производства данных устройств в мире составляет более 800 тысяч тонн в год. Некоторые из катализаторов работают от 6 месяцев до года, у других эксплуатационный срок гораздо выше – до 10-12 лет. После того, как исчерпан лимит работы, катализатор необходимо правильно утилизировать.

Наша компания предлагает вам выгодные условия продажи по оптимальным ценам. Обращайтесь к нам – помните, что в катализаторах содержаться не только драгметаллы, но и вредные вещества. Не выбрасывайте устройства на свалки, лучше спасти природу, да еще плюс к этому и получить неплохую сумму денег за утиль.

КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ, КЛАССИФИКАЦИЯ, ВИДЫ КАТАЛИЗА, ВЛИЯНИЕ КАТАЛИЗАТОРА НА СКОРОСТЬ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Катамлиз (греч. кбфЬлхуйт восходит к кбфблэейн — разрушение) — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.

Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Катализ ? основа химических производств (относительная доля каталитических процессов составляет 80-90 %).

Большая часть всех промышленных реакций — каталитические.

Случай, когда катализатором является один из продуктов реакции или ее исходных веществ, называют автокатализом.

Основные принципы катализа

Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.

По влиянию на скорость реакции катализ многие источники делят на положительный (скорость реакции растет) и отрицательный (скорость реакции падает). В последнем случае происходит процесс ингибирования, который нельзя считать ‘отрицательным катализом’, поскольку ингибитор в ходе реакции расходуется.

Катализ бывает гомогенным и гетерогенным (контактным)межфазный, мицеллярный, ферментативный.

В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой. Типичными гомогенными катализаторами являются кислоты и основания

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода.

Реакция протекает в две стадии:

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации-минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Термин введён Сванте Августом Аррениусом в 1889. Типичное обозначение энергии реакции Ea.

Соотношение между энергией активации () и энтальпией (энтропией) реакции (ДH) при наличии и при отсутствии катализатора. Наивысшая точка энергии представляет собой энергетический барьер. В присутствии катализатора энергии, которая необходима для начала реакции, требуется меньше.

Энергия активации E каталитических реакций значительно меньше, чем для той же реакций в отсутствие катализатора. Например, для некаталитического разложения NH3 на N2 + Н2 E

320 кДж/моль, для того же разложения в присутствии Pt Е

Благодаря снижению E обеспечивается ускорение каталитических реакций по сравнению с некаталитическими.

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

1. Диффузия реагирующих веществ к поверхности твердого вещества

2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их

3. Химическая реакция между реагирующими молекулами

4. Десорбция продуктов с поверхности катализатора

5. Диффузия продукта с поверхности катализатора в общий поток

В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).

Металлическая платина (показана стрелками), стабилизированная на носителе — оксиде алюминия

Носитель катализатора, иначе подложка (катализатора) (англ. carrier или support) — инертный или малоактивный материал, служащий для стабилизации на его поверхности частиц активной каталитической фазы.

Роль носителя в гетерогенном катализе состоит в предотвращении агломерации или спекания активного компонента, что позволяет поддерживать высокую площадь контакта активного вещества (см. активная каталитическая фаза) и реагентов. Количество носителя, как правило, гораздо больше количества нанесенного на него активного компонента. Основными требованиями к носителям являются большая площадь поверхности и пористость, термическая стабильность, химическая инертность, высокая механическая прочность. В ряде случаев носитель влияет на свойства активной фазы (эффект «сильного взаимодействия металл-носитель»). В качестве носителей применяют как природные (глины, пемза, диатомит, асбест и др.), так и синтетические материалы (активные угли, силикагель, алюмосиликаты, оксиды алюминия, магния, циркония и др.).

Химия катализа — изучает вещества, изменяющие скорость химических реакций. Вещества, замедляющие реакции, называются ингибиторами.

Ферменты — это биологические катализаторы. Катализатор не находится в стехиометрических отношениях с продуктами и регенерируется после каждого цикла превращения реагентов в продукты. Несмотря на появление новых способов активации молекул (плазмохимия, радиационное и лазерное воздействия и другие)

Катализамтор — химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от реагентов, после реакции не изменяется. Важно понимать, что катализатор участвует в реакции. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно повторяется.

Катализаторы в химии

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в однойфазе с реагирующими веществами, гетерогенный — образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества.

Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO [1] .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы.

Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со +3 , V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Окислимтельно-восстановимтельные реамкции, ОВР, (redox [1] В общем виде электронное строение переходных элементов можно представить следующим образом: . На ns-орбитали содержится один или два электрона, остальные валентные электроны находятся на -орбитали. Поскольку числовалентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.

Технологические характеристики твердых катализаторов

Подбор катализаторов для проведения промышленных процессов — задача чрезвычайно сложная. Катализаторы очень специфичны по отношению к различным химическим реакциям. Существующие теории катализа объясняют эту специфичность рядом энергетических и геометрических факторов, в результате влияния которых данный катализатор воздействует на скорость только одной реакции или очень узкой группы реакций. Не всегда еще возможен строгий научный выбор конкретного катализатора для данного химико-технологического процесса, хотя теория каталитических процессов в последние десятилетия получила значительное развитие и характеризуется многими новыми достижениями.

Твердые катализаторы — это, как правило, высокопористые вещества с развитой внутренней поверхностью, характеризующиеся определенной пористой и кристаллической структурой, активностью, селективностью и рядом других технологических характеристик.

Рассмотрим некоторые характеристики твердых катализаторов.

Активность. При сравнении разных катализаторов обычно выбирают более активный, если он удовлетворяет основным технологическим требованиям.

Активность катализатора — мера ускоряющего воздействия по отношению к данной реакции.

В связи с большим разнообразием каталитических процессов не существует единого количественного критерия активности. Это связано с тем, что применение различных катализаторов даже для одной и той же химической реакции может по-разному изменить ее механизм. Как правило, применение катализатора приводит к изменению и порядка реакции, и энергии активации, и предэкспоненциального множителя.

Количественным критерием активности катализатора для данной реакции может служить, например, константа скорости, измеренная для разных катализаторов в сопоставимых условиях (стандартных). Такой подход применим, если для всех сравниваемых катализаторов данной группы остается одинаковым порядок реакции.

Иногда сравнивают катализаторы по скорости реакции или степени превращения реагентов в стандартных условиях, по количеству реагентов, вступающих во взаимодействие в единицу времени на единице поверхности катализатора (производительности, или напряженности, катализатора) и т. п.

В технологических расчетах часто каталитическую активность определяют скоростью реакции в стандартных для этой реакции условиях, отнесенной к единице объема или массы катализатора.

Если каталитическая реакция имеет такой же порядок, что и некаталитическая, т. е. их константы скорости k Kт и k имеют одинаковые единицы измерения, активность катализатора А можно определить, как отношение констант

где Е’ и Е — энергии активации каталитической и некаталитической реакции.

Из уравнения (8.1) следует, что активность тем выше, чем больше снижается активация в присутствии катализатора. Однако следует иметь в виду, что в присутствии катализатора меняется не только энергия активации, но и предэкспоненциальный множитель. Рост активности вследствие снижения энергии активации сдерживается уменьшением по сравнению с k0 (имеет место так называемый компенсационный эффект).

Температура зажигания. Наряду с активностью важной технологической характеристикой является температура зажигания катализатора Tзаж.

Температура зажигания — это минимальная температура, при которой технологический процесс начинает идти с достаточной для практических целей скоростью.

Понятие «зажигание» означает, что при возрастании температуры выше предельной, равной Tзаж, происходит резкое, скачкообразное увеличение скорости реакции. «Зажигание» может иметь место и в некаталитических реакциях.

Рассмотрим, например, графическое решение системы уравнений материального и теплового балансов проточного реактора при проведении в нем экзотермической реакции (см. рис. 8.2). Если начальная температура реакционной смеси равна T1, в реакторе не может быть установлена высокая температура и, следовательно, высокая скорость реакции, при которой глубина превращения за заданное время пребывания будет достаточно высокой. Предположим теперь, что линия 2, описывающая уравнение теплового баланса, будет касательной в точке А к линии 1 уравнения материального баланса. Тогда совсем небольшое изменение начальной температуры на входе в реактор от T1?T до T1 + ?T приведет к скачкообразному изменению достигаемой в реакторе степени превращения от хА,1 до хА,2. Это означает, что при тех же значениях объема реактора и объемного расхода реагентов через него произошло резкое возрастание скорости реакции (и одновременно скорости тепловыделения).

Рис. 8.2. Уравнения материального и теплового балансов проточного реактора (совместное решение)

Следовательно, температура Т2 и является температурой зажигания. Числовое значение T2 на рис. 8.2 (и соответственно положение точки А) определяется в первую очередь кинетическими особенностями реакции, влияющими на положение линии 1 уравнения материального баланса. Так как каждый катализатор характеризуется своими кинетическими параметрами, то и температура зажигания будет различной для разных катализаторов.

С технологической точки зрения лучше использовать катализаторы с низкой температурой зажигания, что позволяет снизить энергетические затраты на предварительный нагрев реакционной смеси.

Для экзотермических реакций понятие «температура зажигания» может быть конкретизировано количественно. Чем меньше температура проведения процесса, тем ниже скорость реакции и тем меньше выделяется теплоты. При некоторой минимальной температуре (температура зажигания) скорость выделения теплоты становится равной скорости отвода теплоты (расходу теплоты на нагрев исходной реакционной смеси и выносу теплоты с продуктами реакции). Таким образом, температура зажигания для экзотермических реакций — это минимальная температура, при которой процесс можно проводить в автотермическом режиме, без подвода теплоты извне.

Особенно важно иметь невысокую температуру зажигания катализатора при проведении обратимых экзотермических реакций, тогда невысокие температуры проведения процесса позволяют сместить равновесие реакции в сторону ее продуктов.

Селективность. Сложные каталитические реакции могут протекать по нескольким термодинамически возможным направлениям с образованием большого числа различных продуктов. Преобладающее течение реакции зависит от используемого катализатора, причем не всегда ускоряется процесс, термодинамически самый выгодный из нескольких возможных.

Селективностью, или избирательностью, катализатора называют его способность избирательно ускорять целевую реакцию при наличии нескольких побочных.

Количественно селективность катализатора можно оценить как селективность процесса (см. § 1.2) — интегральную или дифференциальную.

Если одновременно протекает несколько параллельных реакций, можно подобрать разные селективные катализаторы для каждой из этих реакций. Например, в присутствии оксида алюминия или оксида тория этанол разлагается преимущественно на этилен и воду:

В присутствии серебра, меди и других металлов практически имеет место только реакция дегидрирования спирта с образованием уксусного альдегида:

В присутствии смешанного катализатора (А12О3 + ZnO) с достаточно высокой селективностью идут реакции дегидратации и дегидрирования с образованием бутадиена:

Селективность зависит не только от выбранного катализатора, но и от условий проведения процесса, области протекания гетерогенно-каталитического процесса (кинетической, внешне- или внутреннедиффузионной) и т. д.

Пористая и кристаллическая структура катализатора. Важным свойством катализатора является пористая структура, которая характеризуется размерами и формой пор, пористостью (отношением свободного объема пор к общему объему), удельной поверхностью катализатора (т. е. приходящейся на единицу массы или объема).

При выборе твердого вещества, которое должно служить активным катализатором для гетерогенных газовых реакций, важную роль играет доступность поверхности катализатора для реагирующих газов. Чем больше для каждого данного катализатора поверхность, доступная для реагирующего газа, тем выше скорость расходования реагентов в единицу времени при использовании того же количества катализатора.

Промышленные катализаторы всегда имеют развитую внутреннюю поверхность, иначе внешняя поверхность, весьма небольшая, быстро подвергалась бы отравлению, и катализатор вскоре утрачивал бы активность. Чем выше пористость катализатора и чем меньше диаметр пор, тем больше внутренняя поверхность. Современные катализаторы характеризуются большими значениями удельной поверхности (до 10-100 м 2 /г).

Однако распределение пор по размерам может оказаться таким, что часть поверхности катализатора окажется совершенно недоступной для реагирующих молекул большого размера и, кроме того, скорость превращения реагентов в конечные продукты может уменьшаться вследствие затруднения диффузии реагентов внутри пор.

Для получения катализаторов с развитой пористой структурой используют специальные методы их приготовления. Стараются применять в качестве катализаторов природные или искусственные высокопористые адсорбенты (алюмосиликаты, цеолиты, силикагель, активированный уголь и т. д.). Эти вещества употребляют также как носители, на поверхность которых наносят активные компоненты.

Наряду с пористой структурой большое значение имеет кристаллическая структура катализаторов. Различные кристаллические модификации одного и того же вещества могут обладать сильно отличающейся каталитической активностью. Например, переход г — А12О3 в б — А12О3 на несколько порядков снижает активность этого вещества как катализатора дегидрирования.

Промотирование и отравление катализаторов. Часто введение очень небольшого количества (долей процента) какой-либо посторонней добавки к основному катализатору приводит либо к резкому повышению его активности, либо, наоборот, к снижению активности на несколько порядков. В первом случае говорят о промотировании, во втором — об отравлении катализатора.

Механизм промотирования твердых катализаторов может быть различным. Добавки могут вступать с основным катализатором в химическое взаимодействие, образуя на поверхности продукты, обладающие более высокой каталитической активностью. Они могут изменить условия взаимодействия с реагентами в местах контакта основного компонента и промотора, а также увеличить дисперсность или стабилизировать пористую и кристаллическую структуру катализатора и т. п.

Например, каталитическая активность V2O5 по отношению к реакции окисления диоксида серы повышается в сотни раз при добавлении небольших количеств сульфатов щелочных металлов; введение 2-3 % А12О3 в катализатор синтеза аммиака позволяет создать стабильную геометрическую структуру, не меняющуюся под воздействием реакционной среды в течение длительного времени.

Практическому использованию каталитических процессов часто препятствует снижение активности катализатора при воздействии на него веществ, называемых каталитическими ядами. Например, если в газе, поступающем для окисления SO2 на ванадиевом катализаторе, содержание SiF4 составляет 4-5 мг/м 3 , происходит резкое снижение каталитической активности.

Это объясняется теорией активных центров, согласно которой каталитическую активность проявляет не вся поверхность катализатора, а лишь некоторые ее участки, обладающие определенным энергетическим и геометрическим соответствием реагирующим молекулам, — активные центры. Каталитические яды блокируют активные центры, образуя с ними поверхностные химические соединения.

Отравление бывает обратимым и необратимым. При обратимом отравлении активность катализатора постепенно восстанавливается, если в реакционной смеси больше не содержится каталитического яда. При необратимом отравлении действием свежей реакционной смеси активность восстановить не удается. Одно и то же вещество может вызвать и обратимое и необратимое отравления, в зависимости от продолжительности его действия, концентрации в реакционной смеси, температуры процесса.

Например, для железного катализатора синтеза аммиака каталитическими ядами являются кислород и кислородосодержащие соединения (СО, СО2, Н2О). При содержании 1•10- 2 % СО в газовой смеси, поступающей на катализатор, работающий при давлении 30 МПа и температуре 450 °С, через 6 сут. активность катализатора уменьшается на 25 %. Его активность можно полностью восстановить за 1 сут. работы с чистым газом. При содержании 5•10- 2 % СО в исходном газе через 3 сут. активность катализатора падает на 67 %, а через 4 сут. работы на чистом газе полностью восстанавливается. При температуре 500 °С и содержании 5•10- 3 % О2 концентрация в газе на выходе падает на 4 % и применение чистого газа уже не восстанавливает прежнюю активность катализатора.

Для удлинения срока службы катализатора в промышленных условиях в технологических схемах предусматривают тщательную очистку реагирующих веществ от примесей, являющихся каталитическими ядами (например, в производстве серной кислоты — от соединений мышьяка и фтора, в производстве аммиака — от СО, СО2, сернистых соединений и т. д.).

В ряде случаев катализатор отравляется побочными продуктами реакции. Так, в реакциях органических соединений (крекинга, дегидрирования, изомеризации) отравление катализаторов часто происходит в результате образования высокоуглеродистой полимерной пленки (так называемого кокса), покрывающей поверхность катализатора. Для ее удаления цикл катализа сменяют циклом регенерации — катализатор продувают при высокой температуре воздухом для перевода кокса в СО2.

Катализаторы технологических процессов

Статья подготовлена на основе исследования ОАО «НИИТЭХИМ» рынка катализаторов гидро­очистки, гидродепарафинизации, каталитического крекинга, риформинга и гидрокрекинга в России. Исследование также содержит оценку потребностей нефтеперерабатывающей промышленности РФ в катализаторах на перспективу до 2030 г. Часть I (Потребление) см. в «Вестнике химической промышленности» № 6, 2016.

Существующие в РФ производители катализаторов ГО, ГК, КК, ДП.

На территории РФ работают восемь производителей катализаторов ГО, ГК, КК и ДП (катализаторных фабрик):

  • ЗАО «Нижегородские сорбенты»;
  • ЗАО «Промышленные катализаторы»;
  • ООО «Новокуйбышевский завод катализаторов»;
  • ОАО «Ангарский завод катализаторов и органического синтеза»;
  • ОАО «Газпромнефть-Омский НПЗ»;
  • ООО «Салаватский катализаторный завод»;
  • ООО «Стерлитамакский завод катализаторов»;
  • ООО «Ишимбайский специализированный химический завод катализаторов».

Последние два завода входят в структуру ООО «КНТ Групп». В табл. 1 приведены возможности катализаторных фабрик по производству различных катализаторов.

Объем выпуска катализаторов

Общая проектная мощность российских катализаторных фабрик составляет 23 тыс. т/год по микросферическим катализаторам крекинга и 27,5 тыс. т/год других катализаторов для нефтепереработки, включая шариковый катализатор крекинга. В табл. 3 приведены данные по проектным мощностям и производству катализаторов в 2013 и 2014 гг., а также прогноз до 2030 г. Информация по производству катализаторов защитного слоя приведена в табл. 4.

В табл. 5–7 приведены данные по производству катализаторов гидроочистки, крекинга и гидрокрекинга на отечественных фабриках.

Катализатор – вещества, изменяющие скорость химической реакции или вызывающие её, но НЕ входящие в состав продуктов. 3)

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный — образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества. 4) Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2О3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaО, BaО, MgО.

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.). 5)

Гетерогенные катализаторы редко применяются в виде индивидуальных веществ и, как правило, содержат носитель и различные добавки, получившие название модификаторов. Цели их введения разнообразны: повышение активности катализатора (промоторы), его избирательности и стабильности, улучшение механических и структурных свойств. Фазовые и структурные модификаторы стабилизируют соответственно активную фазу и пористую структуру поверхности катализатора.

В смешанных катализаторах, где компоненты находятся в соизмеримых количествах (например, в алюмокобальт- или алюмоникельмолибденовых катализаторах процессов гидроочистки нефтяного сырья), могут образоваться новые, более активные соединения, их твердый раствор в основном компоненте или же многофазные системы, обладающие специфическим каталитическим действием. Так, Со или Ni в отдельности обладают высокой де- и гидрирующей активностью, но исключительно чувствительны к отравляющему действию сернистых соединений. Мо в отношении этой реакции малоактивен, но обладает большим сродством к сернистым соединениям. Катализаторы, в которых одновременно присутствуют Мо и Со или Ni в оптимальных соотношениях, весьма эффективны в реакциях гидрогенолиза сернистых и других гетероорганических соединений нефтяного сырья.

Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Pt, Pd, Ni, Со, Ag). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Особый класс представляют цеолитсодержащие алюмосиликатные катализаторы крекинга нефтяного сырья. Главную роль в них играют кристаллические цеолиты, имеющие каркасную структуру с относительно большими сотообразными полостями, которые сообщаются окнами малых размеров, связывающими полости между собой. В 1 г цеолита имеется около 1020 полостей и 800 м2 поверхности, способной к ионному обмену на металлы. Цеолиты диспергируются в аморфной матрице, которая выполняет роль носителя с крупными порами и при крекинге способствует первичному распаду высокомолекулярного нефтяного сырья и тем самым готовит сырье для последующих вторичных реакций на цеолите. 6)

Исходя из изложенного выше, можно сделать вывод, что промышленные катализаторы состоят из: матрицы (носителя 7) ), активного компонента и вспомогательных добавок или присадок. В зависимости от механизма взаимодействия нанесенные катализаторы бывают «сорбционными» и «пропиточными».

«Сорбционные» – в процессе приготовления имеет место взаимодействие между носителем и исходным веществом, адсорбирующимся на поверхности. «Пропиточные» – такое взаимодействие практически отсутствует и исходное соединение активного компонента находится в растворенном состоянии в порах носителя. 8)

Характерное свойство нанесённых катализаторов – неравномерность распределения активного компонента по сечению гранулы. Четыре основных типа: I – с равномерным распределением; II – «корочковый», у которых активный компонент сосредоточен у периферии гранул; III – активный компонент сосредоточен в центре гранулы («яичный желток»); IV – активный компонент расположен в средней области, удаленной как от центра, так и от внешней поверхности зерна катализатора. 9)

Матрица должна обеспечивать сохранение каталитических свойств катализатора в условиях высоких температур, предохранять его от воздействия каталитических ядов, создавать определенную форму, гранулометрический состав и необходимую механическую прочность частиц, обеспечивать доступность активных металлов для молекул сырья. Вещество матрицы способствует равномерному распределению активных металлов в порах катализатора и интенсивному протеканию массо- и теплообменных процессов. Оно существенно влияет на термическую стабильность катализатора. 10)

Основными технологическими характеристиками катализаторов являются активность и селективность (избирательность) по отношению к данной реакции, стабильность и регенерируемость, а также гранулометрический состав, плотность, механическая прочность на раздавливание и истирание. 11)

Активность катализатора – определяется удельной скоростью данной каталитической реакции, т. е. количеством продукта, образующегося в единицу времени на единицу объёма катализатора или реактора. 12) Количественно активность определяют как скорость реакции в данных условиях за вычетом скорости той же реакции в отсутствие катализатора. Потеря активности катализатора происходит, главным образом, в результате отложений кокса на поверхности и в порах его носителя. 13)

Активные центры гетерогенного катализатора – специфические центры на поверхности твёрдого тела (или макромолекулы), при взаимодействии с которыми молекулы реагирующего вещества активируются и реакция протекает с большей скоростью (каталитически активной является не вся поверхность гетерогенного катализатора, а лишь некоторые участки её). В гомогенном катализе в идеальном случае все молекулы растворенного катализатора являются АЦ и образуют с реагентами промежуточные реакционноспособные продукты. 14)

В подавляющем большинстве случаев в присутствии данного катализатора, помимо основной реакции, протекает еще ряд побочных параллельных или последовательных реакций. Доля прореагировавших исходных веществ с образованием целевых продуктов характеризует селективность катализатора. Она зависит не только от природы катализатора, но и от параметров каталитического процесса, поэтому ее следует относить к определенным условиям проведения реакции. Селективность зависит также от термодинамического равновесия. В нефтепереработке иногда селективность условно выражают как отношение выходов целевого и побочного продуктов, например таких, как бензин/газ, бензин/кокс или бензин/газ + кокс.

Стабильность является одним из важнейших показателей качества катализатора, характеризует его способность сохранять свою активность во времени. От нее зависят стабильность работы установок, продолжительность их межремонтного пробега, технологическое оформление, расход катализатора, материальные и экономические затраты, вопросы охраны окружающей среды и технико-экономические показатели процесса и др.

В процессе длительной эксплуатации катализаторы с определенной интенсивностью претерпевают физико-химические изменения, приводящие к снижению или потере их каталитической активности (иногда селективности), т. е. катализаторы подвергаются физической и химической дезактивации.

Физическая дезактивация (спекание) катализатора происходит под воздействием высокой температуры (в некоторых каталитических процессах) и водяного пара и при его транспортировке и циркуляции. Этот процесс сопровождается снижением удельной поверхности как носителя (матрицы) катализатора, так и активного компонента (в результате рекристаллизации — коалесценции нанесенного металла с потерей дисперсности).

Химическая дезактивация катализатора обусловливается:

В зависимости от того, восстанавливается или не восстанавливается каталитическая активность после регенерации катализатора, различают соответственно обратимую и необратимую дезактивации. Однако даже в случае обратимой дезактивации катализатор в конечном счете «стареет» и приходится выгружать его из реактора. 15)

Большое влияние на промышленные процессы оказывает механическая прочность катализатора. Так на всех современных установках каталитического крекинга использован принцип непрерывного движения катализатора — в виде псевдоожиженного слоя, по линии пневмотранспорта или реже в виде слоя крупногранулированных частиц. Во всех случаях частицы претерпевают трение и удары о стенки аппаратуры и друг о друга, в результате чего они могут раскалываться или истираться. Образование катализаторной крошки и пыли нарушает режим пневмотранспорта и псевдоожижения, увеличивает перепад давления в линии. Образующиеся пыль и крошку удаляют, поэтому необходимо заменять их свежими порциями катализатора, что повышает расходы на эксплуатацию установки. Механическую прочность катализаторов определяют методом истирания проб в циркуляционной системе — в псевдоожиженном слое, с одновременными ударами частиц о металлическую поверхность и др. 16)

Еще одной характеристикой катализатора является его регенерируемость. Под регенерируемостью катализатора понимается как способность его восстанавливать активность после соответствующей обработки, так и количественные характеристики процесса регенерации, прежде всего его скорость. 17)

Большое влияние на качество катализатора оказывает способ его получения. Поскольку каталитическая реакция протекает на поверхности, целесообразно получить катализатор с максимально развитой поверхностью с большим количеством пор. Для разных реакций оптимальными могут быть узкие или, наоборот, более широкие поры, а также их комбинации. Не менее важны форма и размер зерен катализатора — от этого зависят удельная производительность, гидравлическое сопротивление слоя катализатора и конструкция реакционных аппаратов (со стационарным, движущимся или псевдоожиженным слоем катализатора). Кроме того, сама активность единицы поверхности катализатора зависит не только от его химического состава, но и от способа его приготовления. 18)

Технологические характеристики твердых катализаторов

Подбор катализаторов для проведения промышленных процессов – задача чрезвычайно сложная. Катализаторы очень специфичны по отношению к различным химическим реакциям. Существующие теории катализа объясняют эту специфичность рядом энергетических и геометрических факторов, в результате влияния которых данный катализатор воздействует на скорость только одной реакции или очень узкой группы реакций. Не всегда еще возможен строгий научный выбор конкретного катализатора для данного химико-технологического процесса, хотя теория каталитических процессов в последние десятилетия получила значительное развитие и характеризуется многими новыми достижениями.

Твердые катализаторы – это, как правило, высокопористые вещества с развитой внутренней поверхностью, характеризующиеся определенной пористой и кристаллической структурой, активностью, селективностью и рядом других технологических характеристик.

Рассмотрим некоторые характеристики твердых катализаторов.

Активность.При сравнении разных катализаторов обычно выбирают более активный, если он удовлетворяет основным технологическим требованиям.

Активность катализатора – мера ускоряющего воздействия по отношению к данной реакции.

Всвязи с большим разнообразием каталитических процессов не существует единого количественного критерия активности. Это связано с тем, что применение различных катализаторов даже для одной и той же химической реакции может по-разному изменить ее механизм. Как правило, применение катализатора приводит к изменению и порядка реакции, и энергии активации, и предэкспоненциального множителя.

Количественным критерием активности катализатора для данной реакции может служить, например, константа скорости, измеренная для разных катализаторов в сопоставимых условиях (стандартных). Такой подход применим, если для всех сравниваемых катализаторов данной группы остается одинаковым порядок реакции.

Иногда сравнивают катализаторы по скорости реакции или степени превращения реагентов в стандартных условиях, по количеству реагентов, вступающих во взаимодействие в единицу времени на единице поверхности катализатора (производительности, или напряженности, катализатора) и т. п.

В технологических расчетах часто каталитическую активность определяют скоростью реакции в стандартных для этой реакции условиях, отнесенной к единице объема или массы катализатора.

Если каталитическая реакция имеет такой же порядок, что и некаталитическая, т. е. их константы скорости k Kт и k имеют одинаковые единицы измерения, активность катализатора А можно определить, как отношение констант

, (8.1)

где Е’ и Е – энергии активации каталитической и некаталитической реакции.

Из уравнения (8.1)следует, что активность тем выше, чем больше снижается активация в присутствии катализатора. Однако следует иметь в виду, что в присутствии катализатора меняется не только энергия активации, но и предэкспоненциальный множитель. Рост активности вследствие снижения энергии активации сдерживается уменьшением по сравнению с k0(имеет место так называемый компенсационный эффект).

Температура зажигания.Наряду с активностью важной технологической характеристикой является температура зажигания катализатора Tзаж.

Температура зажигания – это минимальная температура, при которой технологический процесс начинает идти с достаточной для практических целей скоростью.

Понятие «зажигание» означает, что при возрастании температуры выше предельной, равной Tзаж,происходит резкое, скачкообразное увеличение скорости реакции. «Зажигание» может иметь место и в некаталитических реакциях.

Рассмотрим, например, графическое решение системы уравнений материального и теплового балансов проточного реактора при проведении в нем экзотермической реакции (см. рис. 8.2). Если начальная температура реакционной смеси равна T1, в реакторе не может быть установлена высокая температура и, следовательно, высокая скорость реакции, при которой глубина превращения за заданное время пребывания будет достаточно высокой. Предположим теперь, что линия 2,описывающая уравнение теплового баланса, будет касательной в точке А к линии 1 уравнения материального баланса. Тогда совсем небольшое изменение начальной температуры на входе в реактор от T1∆T до T1 + ∆T приведет к скачкообразному изменению достигаемой в реакторе степени превращения от хА,1 до хА,2. Это означает, что при тех же значениях объема реактора и объемного расхода реагентов через него произошло резкое возрастание скорости реакции (и одновременно скорости тепловыделения).

Рис. 8.2.Уравнения материального и теплового балансов
проточного реактора (совместное решение)

Следовательно, температура Т2 и является температурой зажигания. Числовое значение T2 на рис. 8.2 (и соответственно положение точки А) определяется в первую очередь кинетическими особенностями реакции, влияющими на положение линии 1 уравнения материального баланса. Так как каждый катализатор характеризуется своими кинетическими параметрами, то и температура зажигания будет различной для разных катализаторов.

С технологической точки зрения лучше использовать катализаторы снизкой температурой зажигания, что позволяет снизить энергетические затраты на предварительный нагрев реакционной смеси.

Для экзотермических реакций понятие «температура зажигания» может быть конкретизировано количественно. Чем меньше температура проведения процесса, тем ниже скорость реакции и тем меньше выделяется теплоты. При некоторой минимальной температуре (температура зажигания) скорость выделения теплоты становится равной скорости отвода теплоты (расходу теплоты на нагрев исходной реакционной смеси и выносу теплоты с продуктами реакции). Таким образом, температура зажигания для экзотермических реакций – это минимальная температура, при которой процесс можно проводить в автотермическом режиме, без подвода теплоты извне.

Особенно важно иметь невысокую температуру зажигания катализатора при проведении обратимых экзотермических реакций, тогда невысокие температуры проведения процесса позволяют сместить равновесие реакции в сторону ее продуктов.

Селективность. Сложные каталитические реакции могут протекать по нескольким термодинамически возможным направлениям с образованием большого числа различных продуктов. Преобладающее течение реакции зависит от используемого катализатора, причем не всегда ускоряется процесс, термодинамически самый выгодный из нескольких возможных.

Селективностью, или избирательностью, катализатора называют его способность избирательно ускорять целевую реакцию при наличии нескольких побочных.

Количественно селективность катализатора можно оценить как селективность процесса (см. § 1.2) – интегральную или дифференциальную.

Если одновременно протекает несколько параллельных реакций, можно подобрать разные селективные катализаторы для каждой из этих реакций. Например, в присутствии оксида алюминия или оксида тория этанол разлагается преимущественно на этилен и воду:

С2Н5ОН С2Н4 + Н2О.

В присутствии серебра, меди и других металлов практически имеет место только реакция дегидрирования спирта с образованием уксусного альдегида:

С2Н5ОН СН3СНО + Н.

В присутствии смешанного катализатора (А12О3 + ZnO) с достаточно высокой селективностью идут реакции дегидратации и дегидрирования с образованием бутадиена:

2Н5ОН С4Н6 + 2Н2О + Н2.

Селективность зависит не только от выбранного катализатора, но и от условий проведения процесса, области протекания гетерогенно-каталитического процесса (кинетической, внешне- или внутреннедиффузионной) и т. д.

Пористая и кристаллическая структура катализатора.Важным свойством катализатора является пористая структура, которая характеризуется размерами и формой пор, пористостью (отношением свободного объема пор к общему объему), удельной поверхностью катализатора (т. е. приходящейся на единицу массы или объема).

При выборе твердого вещества, которое должно служить активным катализатором для гетерогенных газовых реакций, важную роль играет доступность поверхности катализатора для реагирующих газов. Чем больше для каждого данного катализатора поверхность, доступная для реагирующего газа, тем выше скорость расходования реагентов в единицу времени при использовании того же количества катализатора.

Промышленные катализаторы всегда имеют развитую внутреннюю поверхность, иначе внешняя поверхность, весьма небольшая, быстро подвергалась бы отравлению, и катализатор вскоре утрачивал бы активность. Чем выше пористость катализатора и чем меньше диаметр пор, тем больше внутренняя поверхность. Современные катализаторы характеризуются большими значениями удельной поверхности (до 10–100м 2 /г).

Однако распределение пор по размерам может оказаться таким, что часть поверхности катализатора окажется совершенно недоступной для реагирующих молекул большого размера и, кроме того, скорость превращения реагентов в конечные продукты может уменьшаться вследствие затруднения диффузии реагентов внутри пор.

Для получения катализаторов с развитой пористой структурой используют специальные методы их приготовления. Стараются применять в качестве катализаторов природные или искусственные высокопористые адсорбенты (алюмосиликаты, цеолиты, силикагель, активированный уголь и т. д.). Эти вещества употребляют также как носители, на поверхность которых наносят активные компоненты.

Наряду с пористой структурой большое значение имеет кристаллическая структура катализаторов. Различные кристаллические модификации одного и того же вещества могут обладать сильно отличающейся каталитической активностью. Например, переход γ – А12О3 в α – А12О3 на несколько порядков снижает активность этого вещества как катализатора дегидрирования.

Промотирование и отравление катализаторов.Часто введение очень небольшого количества (долей процента) какой-либо посторонней добавки к основному катализатору приводит либо к резкому повышению его активности, либо, наоборот, к снижению активности на несколько порядков. В первом случае говорят о промотировании, во втором – об отравлении катализатора.

Механизм промотирования твердых катализаторов может быть различным. Добавки могут вступать с основным катализатором в химическое взаимодействие, образуя на поверхности продукты, обладающие более высокой каталитической активностью. Они могут изменить условия взаимодействия с реагентами в местах контакта основного компонента и промотора, а также увеличить дисперсность или стабилизировать пористую и кристаллическую структуру катализатора и т. п.

Например, каталитическая активность V2O5 по отношению к реакции окисления диоксида серы повышается в сотни раз при добавлении небольших количеств сульфатов щелочных металлов; введение 2–3 % А12О3 в катализатор синтеза аммиака позволяет создать стабильную геометрическую структуру, не меняющуюся под воздействием реакционной среды в течение длительного времени.

Практическому использованию каталитических процессов часто препятствует снижение активности катализатора при воздействии на него веществ, называемых каталитическими ядами. Например, если в газе, поступающем для окисления SO2 на ванадиевом катализаторе, содержание SiF4 составляет 4–5 мг/м 3 , происходит резкое снижение каталитической активности.

Это объясняется теорией активных центров, согласно которой каталитическую активность проявляет не вся поверхность катализатора, а лишь некоторые ее участки, обладающие определенным энергетическим и геометрическим соответствием реагирующим молекулам, – активные центры. Каталитические яды блокируют активные центры, образуя с ними поверхностные химические соединения.

Отравление бывает обратимым и необратимым. При обратимом отравлении активность катализатора постепенно восстанавливается, если в реакционной смеси больше не содержится каталитического яда. При необратимом отравлении действием свежей реакционной смеси активность восстановить не удается. Одно и то же вещество может вызвать и обратимое и необратимое отравления, в зависимости от продолжительности его действия, концентрации в реакционной смеси, температуры процесса.

Например, для железного катализатора синтеза аммиака каталитическими ядами являются кислород и кислородосодержащие соединения (СО, СО2, Н2О). При содержании 1∙10 –2 % СО в газовой смеси, поступающей на катализатор, работающий при давлении 30 МПа и температуре 450 °С, через 6 сут. активность катализатора уменьшается на 25 %. Его активность можно полностью восстановить за 1 сут. работы с чистым газом. При содержании 5∙10 –2 % СО в исходном газе через 3 сут. активность катализатора падает на 67 %, а через 4 сут. работы на чистом газе полностью восстанавливается. При температуре 500 °С и содержании 5∙10 –3 % О2 концентрация в газе на выходе падает на 4 % и применение чистого газа уже не восстанавливает прежнюю активность катализатора.

Для удлинения срока службы катализатора в промышленных условиях в технологических схемах предусматривают тщательную очистку реагирующих веществ от примесей, являющихся каталитическими ядами (например, в производстве серной кислоты – от соединений мышьяка и фтора, в производстве аммиака – от СО, СО2, сернистых соединений и т. д.).

В ряде случаев катализатор отравляется побочными продуктами реакции. Так, в реакциях органических соединений (крекинга, дегидрирования, изомеризации) отравление катализаторов часто происходит в результате образования высокоуглеродистой полимерной пленки (так называемого кокса), покрывающей поверхность катализатора. Для ее удаления цикл катализа сменяют циклом регенерации – катализатор продувают при высокой температуре воздухом для перевода кокса в СО2.

Дата добавления: 2015-06-17 ; просмотров: 2395 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Катализаторы в нефтепереработке (стр. 1 из 3)

Катализаторы в нефтепереработке

Выполнили: ученицы 11 А класса

Морозова Н. В. — учитель химии.

1.Переработка нефти. Основные процессы и их катализаторы

3.Основы синтеза катализатора

Список используемой литературы

— Узнать об основных функциях катализаторов

— Выяснить значение катализаторов в переработке нефти и газа

— Узнать об основных этапах нефтепереработки

— Выяснить в каких процессах применяются катализаторы

— Познакомиться с основами приготовления твердых катализаторов переработки нефти

1. Переработка нефти. Основные процессы и их катализаторы

Нефть известна человечеству с древнейших времён. Раскопками на берегу Евфрата установлено существование нефтяного промысла за 6000—4000 лет до н.э. В то время её применяли в качестве топлива, а нефтяные битумы — в строительном и дорожном деле. Нефть известна была и Древнему Египту, где она использовалась для бальзамирования умерших. Плутарх и Диоскорид упоминают о нефти, как о топливе, применявшемся в Древней Греции. Несмотря на то, что, начиная с 18 в., предпринимались отдельные попытки очищать нефть, всё же она использовалась почти до 2-й половины 19 в. в основном в натуральном виде. Основы учения о нефти были заложены русскими и продолжены далее советскими учёными. Так Д.И. Менделеев впервые обратил внимание на то, что нефть является важнейшим источником химического сырья, а не только топливом; он посвятил ряд работ происхождению и рациональной переработке нефти. Ему принадлежит известное высказывание: «Нефть — не топливо, топить можно и ассигнациями»

Общий состав

Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть — жидкие углеводороды (> 500 веществ или обычно 80—90 % по массе) и гетероатомные органические соединения (4—5 %), преимущественно сернистые (около 250 веществ), азотистые (> 30 веществ) и кислородные (около 85 веществ), а также металлоорганические соединения (в основном ванадиевые и никелевые); остальные компоненты — растворённые углеводородные газы (C1 -C4 , от десятых долей до 4 %), вода (от следов до 10 %), минеральные соли (главным образом хлориды, 0,1—4000 мг/л и более), растворы солей органических кислот и др., механические примеси (частицы глины, песка, известняка). Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества — основные задачи, поставленные перед нефтеперерабатывающей промышленностью в настоящее время. Производство топлив, отвечающих современным требованиям, невозможно без применения таких процессов, как каталитический крекинг, каталитический риформинг, гидроочистка, алкилирование и изомеризация, а в некоторых случаях — гидрокрекинг. Цель переработки нефти (нефтепереработки ) — производство нефтепродуктов, прежде всего, различных топлив (автомобильных, авиационных, котельных и т.д.) и сырья для последующей химической переработки.

1.1 Первичные процессы

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой ее физическое разделение на фракции.

1.1.1 Подготовка нефти

Нефть поступает на НПЗ в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ). Обессоливание начинают с того, что нефть забирают из заводского резервуара, смешивают ее с промывной водой, деэмульгаторами, щелочью (если в сырой нефти есть кислоты). Затем смесь нагревают до 80—120°С и подают в электродегидратор.

Здесь под воздействием электрического поля и температуры вода и растворенные в ней неорганические соединения отделяются от нефти. После этого нефть считается пригодной для дальнейшей переработки и поступает на первичную перегонку.

1.1.2 Атмосферная перегонка

Как и все другие соединения, любой жидкий углеводород нефти имеет свою температуру кипения, то есть температуру, выше которой он испаряется. На этом свойстве и основана перегонка (к слову сказать, даже само название “нефть” происходит от арабского nafatha, что в переводе означает “кипеть”). Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

1.1.3 Вакуумная перегонка

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

1.2 Вторичные процессы

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

Углубляющие: каталитический крекинг, термический крекинг, замедленное коксование, гидрокрекинг, производство битумов и т.д.

Облагораживающие: риформинг, гидроочистка, изомеризация и т.д.

Прочие: процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т.д.

Далее рассмотрим назначение основных вторичных процессов.

1.2.1 Риформинг

Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

1.2.2 Каталитический крекинг

В отличие от физических по существу процессов перегонки, здесь уже происходят глубокие химические преобразования. Из одной большой молекулы можно получить несколько малых; прямоцепочечные углеводороды будут превращены в циклические или в разветвленные…

Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных (пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т.н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Назначение гидроочистки — удаление органических соединений, включающих серу, кислород, азот и металлы, а также снижение содержания непредельных углеводородов, смолисто-асфальтовых веществ, металлоорганических соединений.

Сырьем процесса служат нефтяные фракции от бензина до гудрона.

Побочными реакциями гидроочистки являются реакции гидрирования непредельных углеводородов, гидрокрекинг, коксообразование.

Катализаторами процесса являются оксиды или сульфиды металлов (Со, Ni, Мо, W, Сr) на оксиде алюминия. Основные две группы: алюмокобальтмолибденовые и алюмоникельмолибденовые катализаторы. Вторая группа характеризуется более высокой активностью в реакциях гидрирования азоторганических соединений и ароматических углеводородов.

1.2.4 Коксование

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

1.2.5 Изомеризация

Процесс получения углеводородов изостроения (изопентан, изогексан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства(изопрен из изопентана) и высокооктановых компонентов автомобильных бензинов.

1.2.6 Алкилирование

Назначение процесса: получение высокооктанового компонента бензина. Процесс протекает при температуре 0-10 0 С, давлении 0,3-1,2МПа, объемной скорости 0,1-0,6ч -1 . Катализатором служит 98%-ная серная кислота. Сырье: бутан-бутиленовая фракция. Продукты: легкий алкилат, тяжелый алкилат, пропан, бутан, пентан.

1.2.7 Переработка газов

Очищенные от кислых компонентов газы подвергают разделению. Сырьем процесса ГФУ предельных газов являются: газ и головка каталитического риформинга. В процессе газофракционирования непредельных газов получают пропан, и-бутан, н-бутан, и-пентан, н-пентан, газовый бензин, сухой газ. Сырьем ГФУ непредельных газов являются: газ и головка каталитического крекинга, газ висбрекинга. Получают: пропан-пропиленовую фракцию, бутан-бутиленовую фракцию, газовый бензин, сухой газ.

Рассмотрим типичный НПЗ. На среднестатистическом НПЗ Российской федерации осуществляются следующие процессы:

· Каталитическая изомеризация легких бензиновых фракций

· ГФУ предельных газов

· Гидроочистка реактивного топлива

· Гидроочистка дизельного топлива

· Каталитический крекинг с предварительной гидроочисткой

· ГФУ непредельных газов

Из данных процессов химических 85,7 %, из которых 83,3% химических каталитических, при том 90% из них на твердых катализаторах.

Ссылка на основную публикацию